Examine the diagram. Triangle M P L. Angle P is 90 degrees and angle L is (4 x + 6) degrees. The exterior angle to angle M is 136 degrees. What is the value of x?

Respuesta :

Answer:

x = [tex]10^{0}[/tex]

Step-by-step explanation:

From Δ MPL given that; <P = [tex]90^{0}[/tex], exterior angle to M = [tex]136^{0}[/tex] and <L = [tex](4x+6)^{0}[/tex].

In the triangle, the exterior angle is equal to the sum of the two adjacent interior angles. So that;

[tex]136^{0}[/tex] = [tex]90^{0}[/tex] + [tex](4x+6)^{0}[/tex]

      = [tex]90^{0}[/tex] + 4[tex]x^{0}[/tex] + [tex]6^{0}[/tex]

[tex]136^{0}[/tex] = [tex]96^{0}[/tex] + [tex]x^{0}[/tex]

⇒      4[tex]x^{0}[/tex] = [tex]136^{0}[/tex] - [tex]96^{0}[/tex]

        4[tex]x^{0}[/tex]  = [tex]40^{0}[/tex]

Divided both sides by 4 to have;

[tex]x^{0}[/tex] = [tex]10^{0}[/tex]

The value of x is [tex]10^{0}[/tex].

Answer:

The correct answer is in fact 10 degrees.

Step-by-step explanation:

I hope this helps!

Have a great day! :)