Respuesta :
Answer:
x = $400, y = $200
Explanation:
[tex]a = \left[\begin{array}{ccc}0.4\\0.2\\0.1\end{array}\right]\\b = \left[\begin{array}{ccc}0.5\\0.2\\0.15\end{array}\right][/tex]
[tex]xa + yb = \left[\begin{array}{ccc}260\\120\\70\end{array}\right] \\x \left[\begin{array}{ccc}0.4\\0.2\\0.1\end{array}\right] + y \left[\begin{array}{ccc}0.5\\0.2\\0.15\end{array}\right] = \left[\begin{array}{ccc}260\\120\\70\end{array}\right][/tex]
[tex]\left[\begin{array}{ccc}0.4&0.5\\0.2&0.2\\0.1&0.15\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}260\\120\\70\end{array}\right]\\\\\left[\begin{array}{ccc}0.1&0.15\\0.2&0.2\\0.4&0.5\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}70\\120\\260\end{array}\right]\\[/tex]
Perform the following operation on the matrix equation above:
[tex]R_2 \rightarrow R_2 - 2R_1\\R_3 \rightarrow R_3 - 4R_1[/tex]
The result becomes:
[tex]\left[\begin{array}{ccc}0.1&0.15\\0&-0.1\\0&-0.1\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}70\\-20\\-20\end{array}\right]\\[/tex]
Perform the following operation on the matrix equation above:
[tex]R_3 \rightarrow R_3 - R_2[/tex]
[tex]\left[\begin{array}{ccc}0.1&0.15\\0&-0.1\\0&0\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}70\\-20\\0\end{array}\right]\\\left[\begin{array}{ccc}0.1&0.15\\0&-0.1\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}70\\-20\end{array}\right][/tex]
From the matrix equation above:
0.1x + 0.15y = 70.........(1)
-0.1y = -20.............(2)
From equation (2)
y = (-20)/(-0.1)
y = $200
Put the value of y into equation (1)
0.1x + 0.15(200) = 70
0.1x = 40
x = 40/0.1
x = $400