Respuesta :
Answer:
The wavelength is approximately 611 nm
Explanation:
We can use the formula for the condition of maximum of interference given by:
[tex]d\,sin(\theta)=m\,\lambda\\(0.000250\,\,m)\,\,sin(1.12^o)=8\,\lambda\\\lambda=\frac{1}{8} \,(0.000250\,\,m)\,\,sin(1.12^o)\\\lambda \approx 610.8\,\,nm[/tex]
We can also use the formula for the distance from the central maximum to the 5th minimum by first finding the tangent of the angle to that fifth minimum:
[tex]tan(\theta)=\frac{y}{D}\\ tan(\theta)=\frac{0.0333}{3.02} =0.011026[/tex]
and now using it in the general formula for minimum:
[tex]d\,sin(\theta)\approx d\,tan(\theta)=(m-\frac{1}{2} )\,\lambda\\\lambda\approx 0.00025\,(0.011026)/(4.5)\,\,m\\\lambda\approx 612.55\,\,nm[/tex]
Answer:
The correct answer is [tex]6.1\times10^{-7}\:m[/tex]
Explanation:
The distance from the central maxima to 5th minimum is:
[tex]x_{5n}-x_{0} =3.33\:cm=0.033\:m[/tex]
The distance between the slits and the screen:
[tex]L = 302\:cm = 3.02\:m[/tex]
Distance between 2 slits: [tex]d = 0.00025\:m[/tex]
[tex](n-\frac{1}{2})\lambda=\frac{d(x_n)}{L}[/tex]
For fifth minima, n = 5... so we have:
[tex]x_{5n}=\frac{9\lambda L}{2d}[/tex]
For central maxima, n = 0... so we have:
[tex]x_{0}=\frac{n\lambda L}{d}=0[/tex]
So the distance from central maxima to 5th minimum is:
[tex]\frac{9\lambda \:L}{2d}-0=0.033[/tex] (Putting the values, we get):
[tex]\Rightarrow \lambda = 6.1\times 10^{-7}\:m[/tex]
Best Regards!