Answer:
95% confidence interval for the true mean cholesterol content of all such eggs.
(173.8175 , 196.1825)
Step-by-step explanation:
Step(i):-
Given mean of the sample x⁻ = 185 milligrams
Given standard deviation of the sample 'S' = 17.6 milligrams
Level of significance
∝ = 0.05
[tex]t_({\frac{\alpha }{2} , n-1 }) = t_{0.025 ,11} = 2.2010[/tex]
Step(ii):-
95% confidence interval for the true mean cholesterol content of all such eggs.
[tex](x^{-} - t_{\frac{\alpha }{2} } \frac{S}{\sqrt{n} } , x^{-} + t_{\frac{\alpha }{2} } \frac{S}{\sqrt{n} })[/tex]
[tex](185 - 2.2010 \frac{17.6}{\sqrt{12} } , 185 + 2.2010 \frac{17.6}{\sqrt{12} })[/tex]
( 185 - 11.1825 , 185 + 11.1825)
(173.8175 , 196.1825)
Final answer:-
95% confidence interval for the true mean cholesterol content of all such eggs.
(173.8175 , 196.1825)