Respuesta :

Answer:

Proved

Step-by-step explanation:

Given

Prove that

[tex]\frac{cos x}{1 - sin x} = sec x + tan x[/tex]

[tex]\frac{cos x}{1 - sin x}[/tex]

Multiply the numerator and denominator by 1 + sinx

[tex]\frac{cos x}{1 - sin x} * \frac{1 + sin x}{1 + sin x}[/tex]

Combine both fractions to form 1

[tex]\frac{cos x (1 + sin x)}{(1 - sin x)(1 + sin x)}[/tex]

Expand the denominator using difference of two squares;

[tex]i.e.\ (a - b)(a + b) = a^2 - b^2[/tex]

The expression becomes

[tex]\frac{cos x (1 + sin x)}{(1^2 - sin^2 x)}[/tex]

[tex]\frac{cos x (1 + sin x)}{(1 - sin^2 x)}[/tex]

From trigonometry; [tex]1 - sin^2x = cos^2x[/tex]

The expression becomes

[tex]\frac{cos x (1 + sin x)}{(cos^2 x)}[/tex]

Divide the numerator and the denominator by cos x

[tex]\frac{(1 + sin x)}{(cos x)}[/tex]

Split fraction

[tex]\frac{1}{cos x} + \frac{sin x}{cos x}[/tex]

From trigonometry; [tex]\frac{1}{cos x} = sec x \ and\ \frac{sin\ x}{cos\ x} = tan\ x[/tex]

So;

[tex]\frac{1}{cos x} + \frac{sin x}{cos x}[/tex] = [tex]sec x + tan x[/tex]