Answer:
See explanation
Step-by-step explanation:
True Mathematical Statement
[tex]\text{If }\sqrt{x}=a$ and \sqrt{y}=b,$ then \sqrt{xy}=ab[/tex]
False Mathematical Statement
[tex]\text{If }\sqrt{x}=a$ and \sqrt{y}=b,$ then \sqrt{x+y}=a+b[/tex]
To show using a counterexample that the statement isn't true.
[tex]\text{Let x}=16\\\text{Let y}=9\\\sqrt{16}=4\\\sqrt{9}=3\\\sqrt{16+9}=\sqrt{25}=5\\a+b=3+4=7\\5\neq 7[/tex]
Therefore, the mathematical statement is false.