Answer:
[tex][I_2]=[H_2]=0.369M[/tex]
[tex][HI]=0.0495M[/tex]
Explanation:
Hello,
In this case, considering the described reaction at equilibrium:
[tex]H_2(g) + I_2(g)\rightleftharpoons 2HI(g)[/tex]
We can write the law of mass action for the equilibrium concetrations:
[tex]Kc=\frac{[HI]^2}{[I_2][H_2]}[/tex]
That in terms of the change [tex]x[/tex] (considering the ICE procedure) is written as:
[tex]55.6=\frac{(2x)^2}{([I_2]_0-x)([H_2]_0-x)}[/tex]
Whereas the initial concentration of iodine and hydrogen are both 0.234 M (0.234 moles in 1 liter), therefore, we have:
[tex]55.6=\frac{(2x)^2}{(0.234-x)^2}[/tex]
That can be solved as shown below:
[tex]\sqrt{55.6} =\sqrt{\frac{(2x)^2}{(0.234-x)^2}} \\\\7.457=\frac{2x}{0.234-x}\\\\7.457(0.234-x)=2x\\\\1.745-7.457x=2x\\\\1.745=x(7.457+2)\\\\x=\frac{1.745}{9.457}\\ \\x=0.185M[/tex]
Thereby, equilibrium concentrations are:
[tex][I_2]=[H_2]=2*0.185M=0.369M[/tex]
[tex][HI]=0.234-0.185=0.0495M[/tex]
Regards.