Respuesta :

Answer:

12.56 [tex]cm^2[/tex] is the error in area of circle.

Step-by-step explanation:

Given that:

Radius of the circle, r = 10 cm

Error in measurement of radius, [tex]\triangle r[/tex] = 0.2 cm

To find:

The error in area of circle = ?

Solution:

First of all, let us have a look at the percentage error in measurement of radius:

[tex]\dfrac{\triangle r}{r}\times 100 = \dfrac{0.2}{10}\times 100 = 2\%[/tex]

Now, we know that Area of a circle is given as:

[tex]A = \pi r^2[/tex]

[tex]\Rightarrow \dfrac{\triangle A}{A} \times 100 = 2 \times \dfrac{\triangle r}{r} \times 100\\\Rightarrow \dfrac{\triangle A}{A} = 4\%[/tex]

Area according to r = 10

[tex]A = 3.14\times 10^2 = 314 cm^2[/tex]

Now, error in area = 4% of 314 [tex]cm^2[/tex]

[tex]\Rightarrow \dfrac{4}{100} \times 314 = 12.56 cm^2[/tex]

So, the answer is:

12.56 [tex]cm^2[/tex] is the error in area of circle.