Respuesta :

Answer:

Limit [tex]$\lim_{x \to 0} f(x)$[/tex] does not exist.

Step-by-step explanation:

To calculate left hand limit, we use a value slightly lesser than that of 0.

To calculate right hand limit, we use a value slightly greater than that of 0.

Let h be a very small value.

Left hand limit will be calculate at 0-h

Right hand limit will be calculate at 0+h

First of all, let us have a look at the value of f(0-h) and f(0+h)

[tex]f(0-h)=f(-h) = \dfrac{-h}{|-h|}\\\Rightarrow \dfrac{-h}{h} = -1[/tex]

[tex]f(0-h)=-1 ....... (1)[/tex]

[tex]f(0+h)=f(h) = \dfrac{h}{|h|}\\\Rightarrow \dfrac{h}{h} = 1[/tex]

[tex]f(0+h)=1 ....... (2)[/tex]

Now, left hand limit:

[tex]$\lim_{x \to 0^{-} } f(x)$\\[/tex] = [tex]$\lim_{h \to 0} f(0-h)$[/tex]

[tex]\Rightarrow[/tex] [tex]$\lim_{h \to 0} f(-h)$[/tex]

Using equation (1):

[tex]$\lim_{x \to 0^{-} } f(x)$\\[/tex] = -1

Now, Right hand limit:

[tex]$\lim_{x \to 0^{+} } f(x)$\\[/tex] = [tex]$\lim_{h \to 0} f(0+h)$[/tex]

[tex]\Rightarrow[/tex] [tex]$\lim_{h \to 0} f(h)$[/tex]

Using equation (2):

[tex]$\lim_{x \to 0^{-} } f(x)$\\[/tex] = 1

Since Left Hand Limit [tex]\neq[/tex] Right Hand Limit

So, the answer is:

Limit [tex]$\lim_{x \to 0} f(x)$[/tex] does not exist.