Respuesta :

Answer:

m<GEC = 17.9 deg

Step-by-step explanation:

First, use the Pythagorean theorem to find the length of GE.

(GE)^2 = (E?)^2 + (?G)^2

I am using ? in place of the front right corner point name that is not visible.

(GE)^2 = 12^2 + 3^2

GE = 12.3693

In triangle EGC, for angle GEC, GE is the adjacent leg, and GC is the opposite leg. We use the tangent.

tan GEC = opp/adj

tan GEC = GC/GE

tan GEC = 4/12.3693

tan GEC = 0.32338

Use inverse tangent to find the angle.

m<GEC = 17.9 deg

The angle ∠GEC of a cuboid will be:

"17.9°"

Pythagoras Theorem

According to the question,

Three dimensions,

AC = 4 cm

EH = 12 cm

GH = 3 cm

By using Pythagoras theorem,

→ (GE)² = (EH)² + (GH)²

By substituting the values,

           = (12)² + (3)²

           = 144 + 9

           = 153

     GE = √153

           = 12.3693

Now, In ΔEGC

here, Adjacent leg = GE

        Opposite leg = GC

→ tan GEC = [tex]\frac{Opposite}{Adjacent}[/tex]

                 = [tex]\frac{GC}{GE}[/tex]

                 = [tex]\frac{4}{12.3693}[/tex]

                 = 0.32338  

Hence, by using inversing tangent

m∠GEC = 17.9°

Thus the above answer is correct.

Find out more information about Pythagoras theorem here:

https://brainly.com/question/24417148