Respuesta :

Answer:

Option (1). 17

Step-by-step explanation:

Length of a segment having coordinates (x₁, y₁) and (x₂, y₂) is given by the formula,

d = [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Coordinates of points A and C are (4, 3) and (19, 11).

To get the length of segment AC we will substitute the coordinates in the formula,

AC = [tex]\sqrt{(19-4)^2+(11-3)^2}[/tex]

     = [tex]\sqrt{(15)^2+8^2}[/tex]

     = [tex]\sqrt{225+64}[/tex]

     = [tex]\sqrt{289}[/tex]

     = 17

Therefore, length of segment AC = 17 units.

Option (1) will be the answer.