Write a two column proof Given: AB || DC; BC || AE Prove: BC/EA = BD/EB

Answer:
Step-by-step explanation:
Given:
AB║DC and BC║AE
To prove:
[tex]\frac{\text{BC}}{\text{EA}}=\frac{\text{BD}}{\text{EB}}[/tex]
Statements Reasons
1). ∠ABE ≅ ∠CDB 1). Alternate interior angles
2). ∠AEB ≅ ∠CBD 2). Alternate interior angles
3). ΔCBD ~ ΔAEB 3). AA property of similarity
4). [tex]\frac{\text{BC}}{\text{EA}}=\frac{\text{BD}}{\text{EB}}[/tex] 4). Property of similarity [Corresponding sides of two similar triangles are proportional]