We have air (21% O2 and 79% N2) at 23 bar and 30 C. 4. What is the ideal molar volume (m^3/kmol)? a. b. What is the Z factor? What is the real molar volume?

Respuesta :

Answer:

The  ideal molar volume is  [tex]\frac{V}{n} =V_z= 0.001095 \ m^3/mol[/tex]  

The  Z factor is  [tex]Z = 0.09997[/tex]

The  real molar volume is [tex]\frac{V_r}{n} = V_k= 0.0001095\ \frac{m^3}{mol}[/tex]

Explanation:

From the question we are told that

    The pressure is  [tex]P = 23 \ bar = 23 *10^5 Pa[/tex]

      The temperature is  [tex]T = 30 ^ oC = 303 \ K[/tex]

According to the ideal gas equation we have that

          [tex]PV = nRT[/tex]

=>      [tex]\frac{V}{n}=V_z= \frac{RT}{P}[/tex]

Where  [tex]\frac{V}{n }[/tex] is the molar volume  and  R is the gas constant with value

            [tex]R = 8.314 \ m^3 \cdot Pa \cdot K^{-1}\cdot mol^{-1}[/tex]

substituting values

            [tex]\frac{V}{n} =V_z= \frac{ 8.314 * 303}{23 *10^{5}}[/tex]

             [tex]\frac{V}{n} =V_z= 0.001095 \ m^3/mol[/tex]            

The  compressibility factor of the gas is mathematically represented  as

            [tex]Z = \frac{P * V_z}{RT}[/tex]

substituting values        

          [tex]Z = \frac{23 *10^{5} * 0.001095}{8.314 * 303}[/tex]

          [tex]Z = 0.09997[/tex]

Now the real molar volume is evaluated as

         [tex]\frac{V_r}{n} = V_k= \frac{Z * RT }{P}[/tex]

substituting values

             [tex]\frac{V_r}{n} = V_k= \frac{0.09997 * 8.314 * 303}{23 *10^{5}}[/tex]

             [tex]\frac{V_r}{n} = V_k= 0.0001095\ \frac{m^3}{mol}[/tex]