A market research company conducted a survey to find the level of affluence in a city. They defined the category "affluence" for people earning $100,000 or more annually. Out of 267 persons who replied to their survey, 32 are considered affluent. What is the 95% confidence interval for this population proportion? Answer choices are rounded to the hundredths place

Respuesta :

Answer:

A 95% confidence interval for this population proportion is [0.081, 0.159].

Step-by-step explanation:

We are given that a market research company conducted a survey to find the level of affluence in a city.

Out of 267 persons who replied to their survey, 32 are considered affluent.

Firstly, the pivotal quantity for finding the confidence interval for the population proportion is given by;

                            P.Q.  =  [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]  ~ N(0,1)

where, [tex]\hat p[/tex] = sample proportion of people who are considered affluent = [tex]\frac{32}{267}[/tex] = 0.12

            n = sample of persons = 267

            p = population proportion

Here for constructing a 95% confidence interval we have used One-sample z-test for proportions.

So, 95% confidence interval for the population proportion, p is ;

P(-1.96 < N(0,1) < 1.96) = 0.95  {As the critical value of z at 2.5% level

                                                    of significance are -1.96 & 1.96}  

P(-1.96 < [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 1.96) = 0.95

P( [tex]-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < [tex]{\hat p-p}[/tex] < [tex]1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.95

P( [tex]\hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < p < [tex]\hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.95

95% confidence interval for p = [ [tex]\hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] , [tex]\hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ]

    = [ [tex]0.12-1.96 \times {\sqrt{\frac{0.12(1-0.12)}{267} } }[/tex] , [tex]0.12+1.96 \times {\sqrt{\frac{0.12(1-0.12)}{267} } }[/tex] ]

    = [0.081, 0.159]

Therefore, a 95% confidence interval for this population proportion is [0.081, 0.159].

Answer:

0.08 to 0.16

Step-by-step explanation: