Answer:
A)grow = 6.33%
Nxt year dividends(rounded to nearest cent): $4.31
B) The firm receives 93% (1 - flotation cost) of the market value of the shares so It receives the 42.06 per share
C) stock return 15.86%
D) required rate of return (with flotation): 16.57%
Explanation:
We solve for the constant grow rate:
[tex]\frac{Div_0}{(1 + grow)^{time} } = Div_{time}[/tex]
[tex]\frac{2.98}{(1 + grow)^{5} } = 4.05[/tex]
[tex] grow= \sqrt[5]{4.05/2.98} -1[/tex]
grow= 0.063280262
Dividends for the sixth year:
4.05 x (1.0633) = 4,306365
42.06 / (1 - flotation cost) = 45.23
flotation cost = 1 - 42.06 / 45.23 = 0.07 = 7%
rate of return without flotation:
4.31/45.23 + 0.0633 = 0.158590736 = 15.86%
solving for return considering the existence of flotation cost:
[tex]\frac{divends}{return-growth} = Intrinsic \: Value[/tex]
[tex]\frac{divends}{Price} = return-growth[/tex]
[tex]\frac{divends}{Price} + growth = return[/tex]
[tex]$Cost of Equity =\frac{D_1}{P(1-f)} +g[/tex]
D1 4.31
P 45.23
f 0.07
g 0.0633
[tex]$Cost of Equity =\frac{4.31}{45.23(1-0.07)} +0.0633[/tex]
Ke 0.165763157 = 16.57%