A grating having 5000 lines/cm is used with light of wavelength 633 nm. How many total maxima (count central maxima plus all those on either side of the central maxima) are produced

Respuesta :

Answer:

The  total number of maxima produced is   [tex]m_T = 7[/tex] maxima

Explanation:

From the question we are told that

    The number of lines per cm is  [tex]n = 5000 \ lines/cm[/tex]

      The wavelength of the light is  [tex]\lambda = 633 nm = 633 *10^{-9} \ m[/tex]

Now the distance between the lines is mathematically evaluated as

           [tex]d = \frac{1}{n}[/tex]

substituting values  

          [tex]d = \frac{1}{5000}[/tex]

          [tex]d = \frac{1 *10^{-2}}{5000}[/tex]     N/B - this  statement convert it from  cm to m

         [tex]d = 2 *10^{ -6} \ m[/tex]

Generally the condition for diffraction i mathematically represented as  

          [tex]dsin(\theta ) = m \lambda[/tex]

at maximum  [tex]\theta = 90 ^o[/tex]

             [tex]d sin (90) = \lambda m[/tex]

here m is the  number of  maxima  

      Thus  making  m the subject we have

          [tex]m = \frac{d sin (90)}{ \lambda }[/tex]

So     [tex]m = \frac{2*10^{-6} sin (90)}{ 633 *10^{-9}}[/tex]

          [tex]m = 3.2[/tex]

=>          m  =3  

  Now the total number of maxima would include the bright fringe(3) and  dark fringe (3) plus the central maxima (1)

Thus  

      [tex]m_T = 3 + 3 +1[/tex]

       [tex]m_T = 7[/tex] maxima