Answer:
Object 2 has the larger drag coefficient
Explanation:
The drag force, D, is given by the equation:
[tex]D = 0.5 c \rho A v^2[/tex]
Object 1 has twice the diameter of object 2.
If [tex]d_2 = d[/tex]
[tex]d_1 = 2d[/tex]
Area of object 2, [tex]A_2 = \frac{\pi d^2 }{4}[/tex]
Area of object 1:
[tex]A_1 = \frac{\pi (2d)^2 }{4}\\A_1 = \pi d^2[/tex]
Since all other parameters are still the same except the drag coefficient:
For object 1:
[tex]D = 0.5 c_1 \rho A_1 v^2\\D = 0.5 c_1 \rho (\pi d^2) v^2[/tex]
For object 2:
[tex]D = 0.5 c_2 \rho A_2 v^2\\D = 0.5 c_2 \rho (\pi d^2/4) v^2[/tex]
Since the drag force for the two objects are the same:
[tex]0.5 c_1 \rho (\pi d^2) v^2 = 0.5 c_2 \rho (\pi d^2/4) v^2\\4c_1 = c_2[/tex]
Obviously from the equation above, c₂ is larger than c₁, this means that object 2 has the larger drag coefficient