Answer:
A. Z = 185.87Ω
B. I = 0.16A
C. V = 1mV
D. VL = 68.8V
E. Ф = 30.59°
Explanation:
A. The impedance of a RL circuit is given by the following formula:
[tex]Z=\sqrt{R^2+\omega^2L^2}[/tex] (1)
R: resistance of the circuit = 160-Ω
w: angular frequency = 220 rad/s
L: inductance of the circuit = 0.430H
You replace in the equation (1):
[tex]Z=\sqrt{(160\Omega)^2+(220rad/s)^2(0.430H)^2}=185.87\Omega[/tex]
The impedance of the circuit is 185.87Ω
B. The current amplitude is:
[tex]I=\frac{V}{Z}[/tex] (2)
V: voltage amplitude = 30.0V
[tex]I=\frac{30.0V}{185.87\Omega}=0.16A[/tex]
The current amplitude is 0.16A
C. The current I is the same for each component of the circuit. Then, the voltage in the resistor is:
[tex]V=\frac{I}{R}=\frac{0.16A}{160\Omega}=1*10^{-3}V=1mV[/tex] (3)
D. The voltage across the inductor is:
[tex]V_L=L\frac{dI}{dt}=L\frac{d(Icos(\omega t))}{dt}=-LIsin(\omega t)\\\\V_L=-(0.430H)(160\Omega)sin(220 t)=68.8sin(220t)\\\\V_L_{max}=68.8V[/tex]
E. The phase difference is given by:
[tex]\phi=tan^{-1}(\frac{\omega L}{R})=tan^{-1}(\frac{(220rad/s)(0.430H)}{160\Omega})\\\\\phi=30.59\°[/tex]