A ductile hot-rolled steel bar has a minimum yield strength in tension and compression of 350 MPa. Using the distortion-energy and maximum-shear-stress theories, determine the factors of safety for the following plane stress states.
a. σx = 94 MPa, and τxy = -75 MPa
b. σx = 110 MPa, σy = 100 MPa
c. σx = 90 MPa, σy = 20 MPa, τxy =−20 MPa

Respuesta :

Answer:

Explanation:

From  the given question:

Using the distortion energy theory to determine the  factors of safety  FOS can be expressed  by the relation:

[tex]\dfrac{Syt}{FOS}= \sqrt{ \sigma x^2+\sigma y^2-\sigma x \sigma y+3 \tau_{xy^2}}[/tex]

where; syt = strength in tension and compression = 350 MPa

The maximum shear stress theory  can be expressed as:

[tex]\tau_{max} = \dfrac{Syt}{2FOS}[/tex]

where;

[tex]\tau_{max} =\sqrt{ (\dfrac{\sigma x-\sigma y}{2})^2+ \tau _{xy^2[/tex]

a. Using distortion - energy theory formula:

[tex]\dfrac{350}{FOS}= \sqrt{94^2+0^2-94*0+3 (-75)^2}}[/tex]

[tex]\dfrac{350}{FOS}=160.35[/tex]

[tex]{FOS}=\dfrac{350}{160.35}[/tex]

FOS = 2.183

USing the maximum-shear stress theory;

[tex]\dfrac{350}{2 FOS} =\sqrt{ (\dfrac{94-0}{2})^2+ (-75)^2[/tex]

[tex]\dfrac{350}{2 FOS} =88.51[/tex]

[tex]\dfrac{350}{ FOS} =2 \times 88.51[/tex]

[tex]{ FOS} =\dfrac{350}{2 \times 88.51}[/tex]

FOS = 1.977

b. σx = 110 MPa, σy = 100 MPa

Using distortion - energy theory formula:

[tex]\dfrac{350}{FOS}= \sqrt{ 110^2+100^2-110*100+3(0)^2}[/tex]

[tex]\dfrac{350}{FOS}= \sqrt{ 12100+10000-11000[/tex]

[tex]\dfrac{350}{FOS}=105.3565[/tex]

[tex]FOS=\dfrac{350}{105.3565}[/tex]

FOS =3.322

USing the maximum-shear stress theory;

[tex]\dfrac{350}{2 FOS} =\sqrt{ (\dfrac{110-100}{2})^2+ (0)^2[/tex]

[tex]\dfrac{350}{2 FOS} ={ (\dfrac{110-100}{2})^2[/tex]

[tex]\dfrac{350}{2 FOS} =25[/tex]

FOS = 350/2×25

FOS = 350/50

FOS = 70

c. σx = 90 MPa, σy = 20 MPa, τxy =−20 MPa

Using distortion- energy theory formula:

[tex]\dfrac{350}{FOS}= \sqrt{ 90^2+20^2-90*20+3(-20)^2}[/tex]

[tex]\dfrac{350}{FOS}= \sqrt{ 8100+400-1800+1200}[/tex]

[tex]\dfrac{350}{FOS}= 88.88[/tex]

FOS = 350/88.88

FOS = 3.939

USing the maximum-shear stress theory;

[tex]\dfrac{350}{2 FOS} =\sqrt{ (\dfrac{90-20}{2})^2+ (-20)^2[/tex]

[tex]\dfrac{350}{2 FOS} =\sqrt{ (35)^2+ (-20)^2[/tex]

[tex]\dfrac{350}{2 FOS} =\sqrt{ 1225+ 400[/tex]

[tex]\dfrac{350}{2 FOS} =40.31[/tex]

[tex]FOS} =\dfrac{350}{2*40.31}[/tex]

FOS = 4.341