What is the quotient? StartFraction a minus 3 Over 7 EndFraction divided by StartFraction 3 minus a Over 21 EndFraction StartFraction negative (a minus 3) squared Over 147 EndFraction StartFraction (a minus 3) squared Over 147 EndFraction 3 –3

Respuesta :

Answer:

Correct answer is

[tex]\text{Quotient of }\dfrac{a-3}{7}\div\dfrac{3-a}{21} = -3[/tex]

Step-by-step explanation:

Let us rephrase the given statement mathematically.

We are given the fractions as:

[tex]\dfrac{a-3}{7}[/tex]

to be divided by:

[tex]\dfrac{3-a}{21}[/tex]

To find:

[tex]\dfrac{a-3}{7}\div\dfrac{3-a}{21}[/tex]

Now, let us have a look at the division rule in fractions:

[tex]\dfrac{a}{b} \div \dfrac{c}{d}[/tex]

is equivalent to

[tex]\dfrac{a}{b} \times \dfrac{d}{c}[/tex]

In other words, we say that the second fraction [tex]\frac{c}{d}[/tex] is changed to [tex]\frac{d}{c}[/tex] and [tex]\div[/tex] is changed to [tex]\times.[/tex]

Now solving the given fraction by applying above rules:

[tex]\dfrac{a-3}{3}\div\dfrac{3-a}{21}[/tex]

[tex]\Rightarrow \dfrac{a-3}{7}\times \dfrac{21}{3-a}\\\Rightarrow \dfrac{a-3}{7}\times \dfrac{21}{-(a-3)}\\\Rightarrow \dfrac{1}{1}\times \dfrac{3}{-1}\\\Rightarrow -3[/tex]

So, correct answer is:

[tex]\text{Quotient of }\dfrac{a-3}{7}\div\dfrac{3-a}{21} = -3[/tex]

Answer:

d on edg

Step-by-step explanation:

taking test rn