Find the linear approximation of the function f(x) = 4 − x at a = 0. L(x) = $ Incorrect: Your answer is incorrect. Use L(x) to approximate the numbers 3.9 and 3.99 . (Rou

Respuesta :

Answer:

[tex]L(x)=4-x[/tex]

[tex]L(3.9)=0.1\\L(3.99)=0.01[/tex]

Step-by-step explanation:

The linear approximating polynomial is: [tex]L(x) = f(a) + f'(a)(x - a)[/tex]

Given: [tex]f(x) = 4 - x[/tex] at a=0

f(0)=4-0=4

f'(x)=-1, Therefore: f'(a)=-1

Therefore, the linear approximation of f(x) at a=0 is:

[tex]L(x) = f(0) + f'(a)(x - 0)\\L(x)=4-x[/tex]

We then use our result to approximate 3.9 and 3.99.

[tex]L(3.9)=4-3.9=0.1\\L(3.99)=4-3.99=0.01[/tex]