Answer:
(a)[tex]R(x)=-0.02x^2+610x[/tex]
(b)[tex]R'(x)=-0.04x+610[/tex]
(c)R'(5400)=$394
Step-by-step explanation:
Given that x is the quantity demanded and the speaker's unit price (in dollars) is p where:
p = −0.02x + 610 (0 ≤ x ≤ 20,000)
(a)Revenue function R.
Revenue = Price X Quantity Demanded
Therefore:
R(x)=xp
[tex]=x(-0.02x + 610)\\R(x)=-0.02x^2+610x[/tex]
(b)Marginal revenue function R'(x)
If [tex]R(x)=-0.02x^2+610x[/tex]
Then, the marginal revenue function
[tex]R'(x)=-0.04x+610[/tex]
(c)We want to compute R'(5,400)
[tex]R'(5400)=-0.04(5400)+610\\R'(5400)=394[/tex]
From the above, we can infer that the revenue that will be generated on the sales of the 5401st item is $394.