Respuesta :
Answer:
(a) 48.2 %
(b) 0.4137
(c) 2385.9 kW
Explanation:
The given values are:
Initial pressure,
p₁ = 100 kPa
Initial temperature,
T₁ = 300 K
Mass,
M = 6 kg/s
Pressure ration,
r = 10
Inlent temperature,
T₃ = 1400 K
Specific heat ratio,
k = 1.4
At T₁ and p₁,
⇒ [tex]c_{p}=1.005 \ KJ/Kg.K[/tex]
Process 1-2 in isentropic compression, we get
⇒ [tex]\frac{T_{2}}{T_{1}}=(\frac{p_{2}}{p_{1}})^{\frac{k-1}{k}}[/tex]
[tex]T_{2}=(\frac{p_{2}}{p_{1}})^{\frac{k-1}{k}}. T_{1}[/tex]
On putting the estimated values, we get
[tex]=(10)^{\frac{1.4-1}{1.4}}(300)[/tex]
[tex]=579.2 \ K[/tex]
Process 3-4,
⇒ [tex]\frac{T_{4}}{T_{3}}=(\frac{p_{4}}{p_{3}})^{\frac{k-1}{k}}[/tex]
[tex]T_{4}=(\frac{1}{10})^{\frac{1.4-1}{1.4}}(1400)[/tex]
[tex]=725.13 \ K[/tex]
(a)...
The thermal efficiency will be:
⇒ [tex]\eta =\frac{\dot{W_{t}}-\dot{W_{e}}}{\dot{Q_{in}}}[/tex]
[tex]\eta=1-\frac{\dot{Q_{out}}}{\dot{Q_{in}}}[/tex]
⇒ [tex]\dot{Q_{in}}=\dot{m}(h_{1}-h_{2})[/tex]
[tex]=\dot{mc_{p}}(T_{3}-T_{2})[/tex]
[tex]=6\times 1005\times (1400-579.2)[/tex]
[tex]=4949.4 \ kJ/s[/tex]
⇒ [tex]\dot{Q_{out}}=\dot{m}(h_{4}-h_{1})[/tex]
[tex]=6\times 1.005\times (725.13-300)[/tex]
[tex]=2563.5 \ KJ/S[/tex]
As we know,
⇒ [tex]\eta=1-\frac{\dot{Q_{out}}}{\dot{Q_{in}}}[/tex]
On putting the values, we get
[tex]=1-\frac{2563.5}{4949.4}[/tex]
[tex]=0.482 \ i.e., \ 48.2 \ Percent[/tex]
(b)...
Back work ratio will be:
⇒ [tex]bwr=\frac{\dot{W_{e}}}{\dot{W_{t}}}[/tex]
Now,
⇒ [tex]\dot{W_{e}}=\dot{mc_{p}}(T_{2}-T_{1})[/tex]
On putting values, we get
[tex]=6\times 1.005\times (579.2-300)[/tex]
[tex]=1683.6 \ kJ/s[/tex]
⇒ [tex]\dot{W_{t}}=\dot{mc_{p}}(T_{3}-T_{4})[/tex]
[tex]=6\times 1.005\times (1400-725.13)[/tex]
[tex]=4069.5 \ kJ/s[/tex]
So that,
⇒ [tex]bwr=\frac{1683.6}{4069.5}=0.4137[/tex]
(c)...
Net power is equivalent to,
⇒ [tex]\dot{W}_{eyele}=\dot{W_{t}}-\dot{W_{e}}[/tex]
On substituting the values, we get
[tex]= 4069.5-1683.6[/tex]
[tex]=2385.9 \ kW[/tex]
Following are the solution to the given points:
Given :
Initial pressure [tex]p_1 = 100\ kPa \\\\[/tex]
Initial temperature [tex]T_1 = 300\ K \\\\[/tex]
Mass flow rate of air [tex]m= 6\ \frac{kg}{s}\\\\[/tex]
Compressor pressure ratio [tex]r =10\\\\[/tex]
Turbine inlet temperature [tex]T_3 = 1400\ K\\\\[/tex]
Specific heat ratio [tex]k=1.4\\\\[/tex]
Temperature [tex]\ T_1 = 300\ K[/tex]
pressure [tex]p_1 = 100\ kPa\\\\[/tex]
[tex]\to c_p=1.005\ \frac{kJ}{kg\cdot K}\\\\[/tex]
Process 1-2 is isen tropic compression
[tex]\to \frac{T_2}{T_1}=(\frac{P_2}{P_1})^{\frac{k-1}{k}} \\\\[/tex]
[tex]\to T_2=(\frac{P_2}{P_1})^{\frac{k-1}{k}} \ T_1 \\\\[/tex]
[tex]=(10)^{\frac{1.4-1}{1.4}} (300)\\\\ =(10)^{\frac{0.4}{1.4}} (300) \\\\[/tex]
[tex]\to T_2 = 579.2\ K \\\\[/tex]
Process 3-4 is isen tropic expansion
[tex]\to \frac{T_4}{T_3}=(\frac{P_4}{P_3})^{\frac{k-1}{k}}\\\\ \to T_4=(\frac{1}{10})^{\frac{1.4-1}{1.4}} (1400)\\\\\to T_4= 725.13\ K \\\\[/tex]
For point a:
The thermal efficiency of the cycle:
[tex]\to \eta = \frac{W_i-W_e}{Q_{in}} \\\\\to \eta = \frac{Q_{in}- Q_{out}}{Q_{in}}\\\\\to \eta =1 - \frac{Q_{out}}{Q_{in}} \\\\\to Q_{in}= m(h_3-h_1) = mc_p (T_4-T_1) =(6)(1.005)(725.13-300) = 2563 \ \frac{kJ}{S}\\\\\to \eta =1- \frac{Q_{out}}{Q_{in}}\\\\[/tex]
[tex]=1-\frac{2563.5}{4949.4}\\\\ = 0.482\\\\[/tex]
[tex]\eta = 48.2\%\\\\[/tex]
For point b:
The back work ratio
[tex]\to bwr =\frac{W_e}{W_t}[/tex]
Now
[tex]\to W_e =mc_p (T_2 -T_1)[/tex]
[tex]=(6) (1.005)(579.2 -300)\\\\ =1683.6 \ \frac{kJ}{S}\\\\[/tex]
[tex]\to W_t=mc_p(T_3-T_4)[/tex]
[tex]=(6)(1.005)(1400 - 725.13)\\\\ = 4069.5 \frac{KJ}{s}[/tex]
[tex]\to bwr =\frac{W_s}{W_t}= \frac{1683.6}{4069.5}=0.4137[/tex]
For point c:
The net power developed is equal to
[tex]\to W_{cycle} = W_t-W_e \\\\[/tex]
[tex]= ( 4069.5-1683.6)\\\\ = 2385.9 \ kW\\[/tex]
Learn more about Air compressors:
brainly.com/question/15181914