Air enters the compressor of an ideal cold air-standard Brayton cycle at 100 kPa, 300 K, with a mass flow rate of 6 kg/s. The compressor pressure ratio is 10, and the turbine inlet temperature is 1400 K. For k 5 1.4, calculate (a) the thermal efficiency of the cycle. (b) the back work ratio. (c) the net power developed, in kW.

Respuesta :

Answer:

(a) 48.2 %

(b) 0.4137

(c) 2385.9 kW

Explanation:

The given values are:

Initial pressure,

p₁ = 100 kPa

Initial temperature,

T₁ = 300 K

Mass,

M = 6 kg/s

Pressure ration,

r = 10

Inlent temperature,

T₃ = 1400 K

Specific heat ratio,

k = 1.4

At T₁ and p₁,

⇒  [tex]c_{p}=1.005 \ KJ/Kg.K[/tex]

Process 1-2 in isentropic compression, we get

⇒  [tex]\frac{T_{2}}{T_{1}}=(\frac{p_{2}}{p_{1}})^{\frac{k-1}{k}}[/tex]

    [tex]T_{2}=(\frac{p_{2}}{p_{1}})^{\frac{k-1}{k}}. T_{1}[/tex]

On putting the estimated values, we get

         [tex]=(10)^{\frac{1.4-1}{1.4}}(300)[/tex]

         [tex]=579.2 \ K[/tex]

Process 3-4,

⇒  [tex]\frac{T_{4}}{T_{3}}=(\frac{p_{4}}{p_{3}})^{\frac{k-1}{k}}[/tex]

    [tex]T_{4}=(\frac{1}{10})^{\frac{1.4-1}{1.4}}(1400)[/tex]

         [tex]=725.13 \ K[/tex]

(a)...

The thermal efficiency will be:

⇒  [tex]\eta =\frac{\dot{W_{t}}-\dot{W_{e}}}{\dot{Q_{in}}}[/tex]

    [tex]\eta=1-\frac{\dot{Q_{out}}}{\dot{Q_{in}}}[/tex]

⇒  [tex]\dot{Q_{in}}=\dot{m}(h_{1}-h_{2})[/tex]

           [tex]=\dot{mc_{p}}(T_{3}-T_{2})[/tex]

           [tex]=6\times 1005\times (1400-579.2)[/tex]

           [tex]=4949.4 \ kJ/s[/tex]

⇒  [tex]\dot{Q_{out}}=\dot{m}(h_{4}-h_{1})[/tex]

             [tex]=6\times 1.005\times (725.13-300)[/tex]

             [tex]=2563.5 \ KJ/S[/tex]

As we know,

⇒  [tex]\eta=1-\frac{\dot{Q_{out}}}{\dot{Q_{in}}}[/tex]

On putting the values, we get

       [tex]=1-\frac{2563.5}{4949.4}[/tex]

       [tex]=0.482 \ i.e., \ 48.2 \ Percent[/tex]

(b)...

Back work ratio will be:

⇒  [tex]bwr=\frac{\dot{W_{e}}}{\dot{W_{t}}}[/tex]

Now,

⇒  [tex]\dot{W_{e}}=\dot{mc_{p}}(T_{2}-T_{1})[/tex]

On putting values, we get

          [tex]=6\times 1.005\times (579.2-300)[/tex]

          [tex]=1683.6 \ kJ/s[/tex]

⇒  [tex]\dot{W_{t}}=\dot{mc_{p}}(T_{3}-T_{4})[/tex]

          [tex]=6\times 1.005\times (1400-725.13)[/tex]

          [tex]=4069.5 \ kJ/s[/tex]

So that,

⇒  [tex]bwr=\frac{1683.6}{4069.5}=0.4137[/tex]

(c)...

Net power is equivalent to,

⇒  [tex]\dot{W}_{eyele}=\dot{W_{t}}-\dot{W_{e}}[/tex]

On substituting the values, we get

               [tex]= 4069.5-1683.6[/tex]

               [tex]=2385.9 \ kW[/tex]

Following are the solution to the  given points:

Given :  

Initial pressure [tex]p_1 = 100\ kPa \\\\[/tex]

Initial temperature [tex]T_1 = 300\ K \\\\[/tex]

Mass flow rate of air [tex]m= 6\ \frac{kg}{s}\\\\[/tex]  

Compressor pressure ratio [tex]r =10\\\\[/tex]

Turbine inlet temperature [tex]T_3 = 1400\ K\\\\[/tex]

Specific heat ratio [tex]k=1.4\\\\[/tex]

Temperature [tex]\ T_1 = 300\ K[/tex]

pressure [tex]p_1 = 100\ kPa\\\\[/tex]

[tex]\to c_p=1.005\ \frac{kJ}{kg\cdot K}\\\\[/tex]

Process 1-2 is isen tropic compression  

[tex]\to \frac{T_2}{T_1}=(\frac{P_2}{P_1})^{\frac{k-1}{k}} \\\\[/tex]

[tex]\to T_2=(\frac{P_2}{P_1})^{\frac{k-1}{k}} \ T_1 \\\\[/tex]

         [tex]=(10)^{\frac{1.4-1}{1.4}} (300)\\\\ =(10)^{\frac{0.4}{1.4}} (300) \\\\[/tex]

[tex]\to T_2 = 579.2\ K \\\\[/tex]

Process 3-4 is isen tropic expansion  

[tex]\to \frac{T_4}{T_3}=(\frac{P_4}{P_3})^{\frac{k-1}{k}}\\\\ \to T_4=(\frac{1}{10})^{\frac{1.4-1}{1.4}} (1400)\\\\\to T_4= 725.13\ K \\\\[/tex]

For point a:

The thermal efficiency of the cycle:

[tex]\to \eta = \frac{W_i-W_e}{Q_{in}} \\\\\to \eta = \frac{Q_{in}- Q_{out}}{Q_{in}}\\\\\to \eta =1 - \frac{Q_{out}}{Q_{in}} \\\\\to Q_{in}= m(h_3-h_1) = mc_p (T_4-T_1) =(6)(1.005)(725.13-300) = 2563 \ \frac{kJ}{S}\\\\\to \eta =1- \frac{Q_{out}}{Q_{in}}\\\\[/tex]

       [tex]=1-\frac{2563.5}{4949.4}\\\\ = 0.482\\\\[/tex]

 [tex]\eta = 48.2\%\\\\[/tex]

  For point b:  

The back work ratio  

[tex]\to bwr =\frac{W_e}{W_t}[/tex]

Now

[tex]\to W_e =mc_p (T_2 -T_1)[/tex]

          [tex]=(6) (1.005)(579.2 -300)\\\\ =1683.6 \ \frac{kJ}{S}\\\\[/tex]

[tex]\to W_t=mc_p(T_3-T_4)[/tex]

         [tex]=(6)(1.005)(1400 - 725.13)\\\\ = 4069.5 \frac{KJ}{s}[/tex]

[tex]\to bwr =\frac{W_s}{W_t}= \frac{1683.6}{4069.5}=0.4137[/tex]

   For point c:

The net power developed is equal to

 [tex]\to W_{cycle} = W_t-W_e \\\\[/tex]

                [tex]= ( 4069.5-1683.6)\\\\ = 2385.9 \ kW\\[/tex]

Learn more about Air compressors:

brainly.com/question/15181914