Respuesta :

Answer:

NM = 15

Step-by-step explanation:

There is a property of secants and tangents to a circle where:

The square of the tangent length is equal the length of the external segment of the secant times the whole secant length.

Therefore, in our question, we have that:

[tex]NM^2 = ML * MK[/tex]

The values of NM, ML and MK are:

[tex]NM = x + 3[/tex]

[tex]ML = x - 3[/tex]

[tex]MK = ML + LK = x - 3 + 16 = x + 13[/tex]

So we have:

[tex](x+3)^2 = (x - 3)(x + 13)[/tex]

[tex]x^2 + 6x + 9 = x^2 + 10x - 39[/tex]

[tex]6x + 9 = 10x - 39[/tex]

[tex]4x = 48[/tex]

[tex]x = 12[/tex]

So the length of NM is:

[tex]NM = x + 3 = 12 + 3 = 15[/tex]