contestada

What is the force of gravity (from the Earth) on the 700kg satellite if it’s 10km above the Earth's surface?

Respuesta :

Answer:

g = 4.7 × [tex]10^{-16}[/tex] m/[tex]s^{2}[/tex]

Explanation:

Given that the mass of the satellite = 700 kg, and 10,000 m above the earth;s surface.

From Newton's second law,

 F = mg ............... 1

From Newton's gravitation law,

F = [tex]\frac{GMm}{r^{2} }[/tex] .................. 2

Where: F is the force, G is the gravitational constant, M is the mass of the first body, m is the mass of the second body, g is the gravitational force and r is the distance between the centers of the two bodies.

Equate 1 and 2 to have,

mg = [tex]\frac{GMm}{r^{2} }[/tex]

⇒   g = [tex]\frac{GM}{r^{2} }[/tex]

But; G =  6.67 × [tex]10^{-11}[/tex] N [tex]m^{2} Kg^{-2}[/tex], M = 700 Kg, r = 10000 m

Thus,

g = [tex]\frac{6.67*10^{-11*700} }{10000^{2} }[/tex]

  = [tex]\frac{4.669*10^{-8} }{1*10^{8} }[/tex]

  = 4.669 × [tex]10^{-16}[/tex] m/[tex]s^{2}[/tex]

The force of gravity on the satellite is 4.7 × [tex]10^{-16}[/tex] m/[tex]s^{2}[/tex].