Estimate the indicated probability by using the normal approximation as an approximation to the binomial distribution. (PROBLEMS 4 & 5) 4. Two percent of hair dryers produced in a certain plant are defective. Estimate the probability that of 10,000 randomly selected hair dryers, at least 219 are defective.
5. In one county, the conviction rate for speeding is 85%. Estimate the probability that of the next 100 speeding summonses issued, there will be at least 90 convictions.

Respuesta :

Answer:

4

  [tex]P(X \ge 219 ) = 0.093[/tex]

5

 [tex]P(X \ge 219 ) = 0.1038[/tex]

Step-by-step explanation:

From the question we are told that  

    The percentage of hair dryers that are defective is p=2%  [tex]= 0.02[/tex]

      The  sample size is  [tex]n =10000[/tex]

       The  random number is  x = 219

The mean of this data set is evaluated as

     [tex]\mu = n* p[/tex]

substituting values

     [tex]\mu = 10000 * 0.02[/tex]

    [tex]\mu =200[/tex]

The standard deviation is evaluated as

      [tex]\sigma = \sqrt{[\mu (1 -p)]}[/tex]

substituting values  

      [tex]\sigma = \sqrt{[200 (1 -0.02)]}[/tex]

     [tex]\sigma = 14[/tex]

Since it is  a one tail test the degree of freedom is  

      df =  0.5

So  

   [tex]x_l = x- 0.5[/tex]

   [tex]x = 219 - 0.5[/tex]

    [tex]x = 218.05[/tex]

Now applying normal approximation

    [tex]P(X \ge 219 ) = P(z > \frac{x - \mu}{\sigma} )[/tex]

substituting values  

    [tex]P(X \ge 219 ) = P(z > \frac{218.5 - 200}{14} )[/tex]

    [tex]P(X \ge 219 ) = P(z > 1.32} )[/tex]

From the z-table  

    [tex]P(X \ge 219 ) = 0.093[/tex]

Considering Question 5  

The  random number is  x = 90

      The mean is  [tex]\mu = n * p[/tex]

Where  n = 100

   and  p  =  0.85

So  

     [tex]\mu = 0.85 *100[/tex]    

     [tex]\mu = 85[/tex]

The standard deviation is  evaluated as

     [tex]\sigma = \sqrt{[\mu (1 -p)]}[/tex]

substituting values  

      [tex]\sigma = \sqrt{[85 (1 -0.85)]}[/tex]        

     [tex]\sigma = 3.5707[/tex]      

Since it is  a one tail test the degree of freedom is  

      df =  0.5

Now applying normal approximation

    [tex]P(X \ge 90 ) = P(z > \frac{x - \mu}{\sigma} )[/tex]

   substituting values  

    [tex]P(X \ge 219 ) = P(z > \frac{89.5 - 85}{3.5707} )[/tex]

    [tex]P(X \ge 219 ) = P(z > 1.2603} )[/tex]

From the z-table  

   [tex]P(X \ge 219 ) = 0.1038[/tex]