Respuesta :
Answer:
The current is [tex]I = 6.68 \ A[/tex]
Explanation:
From the question we are told that
The radius of the loop is [tex]r = 6 \ cm = 0.06 \ m[/tex]
The earth's magnetic field is [tex]B_e = 0.7G= 0.7 G * \frac{1*10^{-4} T}{1 G} = 0.7 *10^{-4} T[/tex]
The number of turns is [tex]N =1[/tex]
Generally the magnetic field generated by the current in the loop is mathematically represented as
[tex]B = \frac{\mu_o * N * I}{2 r }[/tex]
Now for the earth's magnetic field to be canceled out the magnetic field generated by the loop must be equal to the magnetic field out the earth
[tex]B = B_e[/tex]
=> [tex]B_e = \frac{\mu_o * N * I }{ 2 * r}[/tex]
Where [tex]\mu[/tex] is the permeability of free space with value [tex]\mu _o = 4\pi * 10^{-7} N/A^2[/tex]
[tex]0.7 *10^{-4}= \frac{ 4\pi * 10^{-7} * 1 * I}{2 * 0.06}[/tex]
=> [tex]I = \frac{2 * 0.06 * 0.7 *10^{-4}}{ 4\pi * 10^{-7} * 1}[/tex]
[tex]I = 6.68 \ A[/tex]
The current in the loop will be "6.68 A".
Magnetic field
According to the question,
Radius of loop, r = 6 cm or,
= 0.06 m
Earth's magnetic field, [tex]B_e[/tex] = 0.7 G or,
= 0.7 × [tex]\frac{1\times 10^{-4}}{1 G}[/tex]
= 0.7 × 10⁻⁴ T
Number of turns, N = 1
We know the relation,
→ B = [tex]\frac{\mu_0\times N\times I}{2r}[/tex]
or,
B = [tex]B_e[/tex]
then,
→ [tex]B_e[/tex] = [tex]\frac{\mu_0\times N\times I}{2r}[/tex]
By substituting the values,
0.7 × 10⁻⁴ = [tex]\frac{4 \pi\times 10^{-7}\times 1\times I}{2\times 0.06}[/tex]
hence,
The current will be:
I = [tex]\frac{2\times 0.06\times 0.7\times 10^{-4}}{4 \pi\times 10^{-7}\times 1}[/tex]
= 6.68 A
Thus the above approach is correct.
Find out more information about Magnetic field here:
https://brainly.com/question/14411049