Answer:
[tex]v=21.36\,\,\frac{m}{s}\\[/tex]
[tex]m=1.2357\,\,kg[/tex]
Explanation:
Recall the formula for linear momentum (p):
[tex]p = m\,v[/tex] which in our case equals 26.4 kg m/s
and notice that the kinetic energy can be written in terms of the linear momentum (p) as shown below:
[tex]K=\frac{1}{2} m\,v^2=\frac{1}{2} \frac{m^2\,v^2}{m} =\frac{1}{2}\frac{(m\,v)^2}{m} =\frac{p^2}{2\,m}[/tex]
Then, we can solve for the mass (m) given the information we have on the kinetic energy and momentum of the particle:
[tex]K=\frac{p^2}{2\,m}\\282=\frac{26.4^2}{2\,m}\\m=\frac{26.4^2}{2\,(282)}\,kg\\m=1.2357\,\,kg[/tex]
Now by knowing the particle's mass, we use the momentum formula to find its speed:
[tex]p=m\,v\\26.4=1.2357\,v\\v=\frac{26.4}{1.2357} \,\frac{m}{s} \\v=21.36\,\,\frac{m}{s}[/tex]