Respuesta :

Answer:

[tex]\frac{d y}{d x} = - (2 x + 3 x^{2} )sin2(x^{2} +x^{3})[/tex]

Step-by-step explanation:

Step(i):-

Given y = cos² (x² + x³)  ....(i)

By using differentiation formulas

a)    [tex]\frac{d}{dx} (cosx) = -sinx[/tex]

b)    [tex]\frac{d}{dx} (x^{n} ) = n x ^{n-1}[/tex]

Step(ii):-

    Differentiating equation (i) with respective to 'x'

First apply formula  [tex]\frac{d}{dx} (x^{n} ) = n x ^{n-1}[/tex]

      [tex]\frac{d y}{d x} = 2 cos (x^{2} +x^{3} )^{2-1} \frac{d}{d x} (cos(x^{2} +x^{3})[/tex]      

Now we will apply formula

     [tex]\frac{d}{dx} (cosx) = -sinx[/tex]

     [tex]\frac{d y}{d x} = 2 cos (x^{2} +x^{3} ) (-sin(x^{2} +x^{3})\frac{d}{dx} (x^{2} +x^{3} )[/tex]

Again apply formula  [tex]\frac{d}{dx} (x^{n} ) = n x ^{n-1}[/tex]

    [tex]\frac{d y}{d x} = 2 cos (x^{2} +x^{3} ) (-sin(x^{2} +x^{3}) (2 x + 3 x^{2} )[/tex]

  [tex]\frac{d y}{d x} = -2 sin (x^{2} +x^{3} ) cos(x^{2} +x^{3}) (2 x + 3 x^{2} )[/tex]

we know that trigonometric formulas

Sin 2θ  = 2 sinθ cosθ

[tex]\frac{d y}{d x} = -sin2(x^{2} +x^{3}) (2 x + 3 x^{2} )[/tex]

Final answer:-

[tex]\frac{d y}{d x} = - (2 x + 3 x^{2} )sin2(x^{2} +x^{3})[/tex]