Respuesta :

Answer:

[tex]L(x)=1+\dfrac{1}{3}x[/tex]

[tex]\sqrt[3]{0.95} \approx 0.9833[/tex]

[tex]\sqrt[3]{1.1} \approx 1.0333[/tex]

Step-by-step explanation:

Given the function: [tex]g(x)=\sqrt[3]{1+x}[/tex]

We are to determine the linear approximation of the function g(x) at a = 0.

Linear Approximating Polynomial,[tex]L(x)=f(a)+f'(a)(x-a)[/tex]

a=0

[tex]g(0)=\sqrt[3]{1+0}=1[/tex]

[tex]g'(x)=\frac{1}{3}(1+x)^{-2/3} \\g'(0)=\frac{1}{3}(1+0)^{-2/3}=\frac{1}{3}[/tex]

Therefore:

[tex]L(x)=1+\frac{1}{3}(x-0)\\\\$The linear approximating polynomial of g(x) is:$\\\\L(x)=1+\dfrac{1}{3}x[/tex]

(b)[tex]\sqrt[3]{0.95}= \sqrt[3]{1-0.05}[/tex]

When x = - 0.05

[tex]L(-0.05)=1+\dfrac{1}{3}(-0.05)=0.9833[/tex]

[tex]\sqrt[3]{0.95} \approx 0.9833[/tex]

(c)

(b)[tex]\sqrt[3]{1.1}= \sqrt[3]{1+0.1}[/tex]

When x = 0.1

[tex]L(1.1)=1+\dfrac{1}{3}(0.1)=1.0333[/tex]

[tex]\sqrt[3]{1.1} \approx 1.0333[/tex]