For some transformation having kinetics that obey the Avrami equation , the parameter n is known to have a value of 1.1. If, after 114 s, the reaction is 50% complete, how long (total time) will it take the transformation to go to 87% completion
y = 1 - exp(-kt^n)

Respuesta :

Answer:

total time  = 304.21 s

Explanation:

given data

y = 50% = 0.5

n = 1.1

t = 114 s

y = 1 - exp(-kt^n)

solution

first we get here k value by given equation

y = 1 - [tex]e^{(-kt^n)}[/tex]   ...........1    

put here value and we get

0.5 = 1 - e^{(-k(114)^{1.1})}    

solve it we get

k = 0.003786  = 37.86 × [tex]10^{4}[/tex]

so here

y = 1 - [tex]e^{(-kt^n)}[/tex]

1 - y  =  [tex]e^{(-kt^n)}[/tex]

take ln both side

ln(1-y) = -k × [tex]t^n[/tex]  

so

t = [tex]\sqrt[n]{-\frac{ln(1-y)}{k}}[/tex]    .............2

now we will put the value of y = 87% in equation  with k and find out t

t = [tex]\sqrt[1.1]{-\frac{ln(1-0.87)}{37.86*10^{-4}}}[/tex]

total time  = 304.21 s