Answer:
Coefficient matrix [tex]=\begin{bmatrix}6&7\\2&-8\end{bmatrix}[/tex]
Augmented matrix [tex]=\begin{bmatrix}\left.\begin{matrix}6&7\\2&-8\end{matrix}\right|\begin{matrix}6\\4\end{matrix}\end{bmatrix}[/tex]
Step-by-step explanation:
The equations of given system of equations are
[tex]6x_1+7x_2=6[/tex]
[tex]2x_1-8x_2=4[/tex]
Here, coefficients of first equation are 6 and 7, coefficients of second equation are 2 and -8.
So, coefficient matrix is
[tex]\begin{bmatrix}6&7\\2&-8\end{bmatrix}[/tex]
In the given equations constants are 6 and 4.
So, the augmented matrix of the given system of linear equations is
[tex]\begin{bmatrix}\left.\begin{matrix}6&7\\2&-8\end{matrix}\right|\begin{matrix}6\\4\end{matrix}\end{bmatrix}[/tex]