contestada

Find the slope of the function when x=4
y=
2x+1/x2

Select one:
a. 386
b. 0.56 X
C. -0.16
d. 1/4
e. -0.125

Respuesta :

Answer:

Option C.

Step-by-step explanation:

The given function is

[tex]y=\dfrac{2x+1}{x^2}[/tex]

We need to find the slope of the function when x=4.

Differentiate the given function w.r.t. x.

[tex]\dfrac{dy}{dx}=\dfrac{x^2\dfrac{d}{dx}(2x+1)-(2x+1)\dfrac{d}{dx}x^2}{(x^2)^2}[/tex]    (Using quotient rule)

[tex]\dfrac{dy}{dx}=\dfrac{x^2(2+0)-(2x+1)(2x)}{x^4}[/tex]

[tex]\dfrac{dy}{dx}=\dfrac{2x^2-4x^2-2x}{x^4}[/tex]

[tex]\dfrac{dy}{dx}=\dfrac{-2x^2-2x}{x^4}[/tex]

[tex]\dfrac{dy}{dx}=\dfrac{-2x(x+1)}{x^4}[/tex]

[tex]\dfrac{dy}{dx}=\dfrac{-2(x+1)}{x^3}[/tex]

Now substitute x=4 in the above equation.

[tex]\dfrac{dy}{dx}_{x=4}=\dfrac{-2(4+1)}{4^3}[/tex]

[tex]\dfrac{dy}{dx}_{x=4}=\dfrac{-2(5)}{64}[/tex]

[tex]\dfrac{dy}{dx}_{x=4}=\dfrac{-10}{64}[/tex]

[tex]\dfrac{dy}{dx}_{x=4}=-0.15625[/tex]

[tex]\dfrac{dy}{dx}_{x=4}\approx -0.16[/tex]

Therefore, the correct option is C.