find the area of the iscoseles triangle first answer=brainliest

Answer:
[tex]60cm^{2}[/tex]
Step-by-step explanation:
so first we need to find the height so by splitting the isosceles triangle into two right-angled triangles and then applying Pythagoras' Theorem to one of them.
[tex]h^{2} =13^{2} -5^{2}[/tex]
[tex]h^{2} =169-25[/tex]
[tex]h^{2} =144[/tex]
[tex]h=\sqrt{144}[/tex]
[tex]h=12[/tex]
We now know the height of the triangle and can use this to go back and find the area of the isosceles triangle.
area of triangle = [tex]\frac{1}{2}[/tex] x base x height
area of triangle = [tex]\frac{1}{2}[/tex] x 10 x 12
area of triangle = 60
Answer:
[tex]\boxed{Area = 60 cm^2}[/tex]
Step-by-step explanation:
Perimeter of the isosceles triangle = 10+13+13
=> 36 cm
Semi Perimeter = 18 cm
Using Heron's formula to find the area:
=> [tex]Area = \sqrt{s(s-a)(s-b)(s-c)}[/tex]
Where s is the semi perimeter and a,b and c are the sides
=> Area = [tex]\sqrt{18(18-13)(18-13)(18-10) }[/tex]
=> Area = [tex]\sqrt{18(5)(5)(8)}[/tex]
=> Area = [tex]\sqrt{3600}[/tex]
=> Area = 60 cm²