Respuesta :

Answer:

[tex]60cm^{2}[/tex]

Step-by-step explanation:

so first we need to find the height so by splitting the isosceles triangle into two right-angled triangles and then applying Pythagoras' Theorem to one of them.

[tex]h^{2} =13^{2} -5^{2}[/tex]

[tex]h^{2} =169-25[/tex]

[tex]h^{2} =144[/tex]

[tex]h=\sqrt{144}[/tex]

[tex]h=12[/tex]

We now know the height of the triangle and can use this to go back and find the area of the isosceles triangle.

area of triangle = [tex]\frac{1}{2}[/tex] x base x height

area of triangle = [tex]\frac{1}{2}[/tex] x 10 x 12

area of triangle = 60

Answer:

[tex]\boxed{Area = 60 cm^2}[/tex]

Step-by-step explanation:

Perimeter of the isosceles triangle = 10+13+13

=> 36 cm

Semi Perimeter = 18 cm

Using Heron's formula to find the area:

=> [tex]Area = \sqrt{s(s-a)(s-b)(s-c)}[/tex]

Where s is the semi perimeter and a,b and c are the sides

=> Area = [tex]\sqrt{18(18-13)(18-13)(18-10) }[/tex]

=> Area = [tex]\sqrt{18(5)(5)(8)}[/tex]

=> Area = [tex]\sqrt{3600}[/tex]

=> Area = 60 cm²