Respuesta :

Answer:

[tex] \boxed{\sf x = 5.9} [/tex]

Step-by-step explanation:

[tex] \sf Solve \: for \: x: \\ \sf \implies 14 = 31.7 - 3x \\ \\ \sf 14 = 31.7 - 3x \: is \: equivalent \: to \: 31.7 - 3 x = 14: \\ \sf \implies 31.7 - 3 x = 14 \\ \\ \sf Subtract \: 31.7 \: from \: both \: sides: \\ \sf \implies (31.7 - \boxed{ \sf 31.7}) - 3x = 14 - \boxed{ \sf 31.7} \\ \\ \sf 31.7 - 31.7 = 0: \\ \sf \implies - 3x = 14 - 31.7 \\ \\ \sf 14 - 31.7 = - 17. 7 : \\ \sf \implies - 3x = \boxed{ \sf - 17.7} \\ \\ \sf Divide \: both \: sides \: of \: - 3 x = - 17.7 \: by \: 3: \\ \sf \implies \frac{ - 3x}{ - 3} = \frac{ - 17.7}{ - 3} \\ \\ \sf \frac{ \cancel{3}}{ \cancel{3}} = 1 : \\ \sf \implies x = \frac{ - 17.7}{3} \\ \\ \sf \frac{ - 17.7}{ - 3} = 5.9 : \\ \sf \implies x = 5.9[/tex]