contestada

Please help, using Brainly and i can’t figure out this question. Given : A STU with overline ST || XY Prove: (SX)/(XU) = (TY)/(YU)

Please help using Brainly and i cant figure out this question Given A STU with overline ST XY Prove SXXU TYYU class=
Please help using Brainly and i cant figure out this question Given A STU with overline ST XY Prove SXXU TYYU class=

Respuesta :

Answer:

The correct answer is;

ΔUXY ≅ Δ UST

Step-by-step explanation:

The given steps are;

1. ΔSTU with [tex]\overline{ST}\left | \right |\overline{XY}[/tex],                                1. Given

2. ∠1 and ∠2 are corresponding angles,   2. Def of corresponding angles

3. ∠3 and ∠4 are corresponding angles,  3. Def of corresponding angles

4. ∠1 ≅ ∠2; ∠3 ≅ ∠4,                                   4. Corresponding angles theorem

5. ΔUXY ≅ΔUST,                                           5, AA similarity theorem

6. [tex]\dfrac{SU}{XU} = \dfrac{TU}{YU}[/tex],                                               6. Def of similar triangles  

7. SU = SX + XU,                                          7. Segment addition postulate

   TU = TY +  YU,        

8. [tex]\dfrac{SX + XU}{XU} = \dfrac{TY + YU}{YU}[/tex],                           8. Substitution property    

9.  [tex]\dfrac{SX }{XU} + 1= \dfrac{TY }{YU}+ 1[/tex],                                   8. Algebra simplification        

By subtracting 1 from both sides of the equation, we get;

[tex]\dfrac{SX }{XU} = \dfrac{TY }{YU}[/tex]          

Answer:

♤: triangle STU is similar to triangle XYU

◇: subtraction property

Step-by-step explanation:

I am sorry if this is a late answer, but I hope this helps :)

Ver imagen jadec098