Respuesta :

Answer:

Only the second equation is an identity

Step-by-step explanation:

[tex]$8 \frac{\tan^2(\theta)}{\sec(\theta)} \csc^2(\theta)=8 \csc(\theta)$[/tex]

Note that

[tex]\tan^2(\theta)\csc^2(\theta)=\sec^2(\theta)[/tex]

You can confirm it:

[tex]$\frac{\sin^2(\theta)}{\cos^2(\theta)}\cdot \frac{1}{\sin^2(\theta)}= \frac{1}{cos^2(\theta)}= \sec^2(\theta)$[/tex]

Therefore

[tex]$8 \frac{\sec^2(\theta)}{\sec(\theta)} =8 \csc(\theta)$[/tex]

[tex]$8 \frac{\sec(\theta)}{1} =8 \csc(\theta)$[/tex]

[tex]8\sec(\theta)=8\csc(\theta)[/tex]

It is not an Identity

Let's the second one

[tex]$13 \frac{\tan^2(\theta)}{\sec(\theta)} \csc^2(\theta)=13\sec(\theta)$[/tex]

In this case, we already performed the calculations, so it is true. It is an Identity.