Respuesta :

Answer:

(a) Local Maximum (x,y) = (0,12)

    Local Minimum (x,y) = (-9,6) (smaller x-value)

    Local Minimum (x,y) = (6,3) (Larger x-value)

(b) Increasing = [tex](-9,0)\cup (6,\infty)[/tex]

    Decreasing = [tex](\infty,-9)\cup (0,6)[/tex]

Step-by-step explanation:

(a)

Local Maximum: The function gives maximum value in small neighborhood.

From the given graph it is clear that the maximum value of the function is 12 at x=0. So,

Local Maximum (x,y) = (0,12)

Local Minimum: The function gives minimum value in small neighborhood.

It is clear that the minimum value of the function is -6 and 3 at x=-9 and x=6. So,

Local Minimum (x,y) = (-9,6) (smaller x-value)

Local Minimum (x,y) = (6,3) (Larger x-value)

(b)

The function is increasing on -9<x<0 and after 6.

Increasing = [tex](-9,0)\cup (6,\infty)[/tex]

The function is decreasing on 0<x<6 and before -9.

Decreasing = [tex](\infty,-9)\cup (0,6)[/tex]