Respuesta :

Answer:

[tex]g(x)=\sqrt[3]{x-1}[/tex]

[tex]h(x)=\sqrt[3]{x}-1[/tex]

Step-by-step explanation:

Graph represents the parent function

[tex]f(x)=\sqrt[3]{x}[/tex]

The translation is defined as

[tex]g(x)=f(x+a)+b[/tex]

Where, a is horizontal shift and b is vertical shift.

If a>0, then the graph shifts a units left and if a<0, then the graph shifts a units right.

If b>0, then the graph shifts b units up and if b<0, then the graph shifts b units down.

From the the given graph it is clear that graph A shifts 1 unit right to get the graph B. So, a=-1, b=0.

[tex]g(x)=\sqrt[3]{x-1}[/tex]

From the the given graph it is clear that graph A shifts 1 unit down to get the graph C. So, a=0, b=-1.

[tex]h(x)=\sqrt[3]{x}-1[/tex]

Therefore, the required functions are [tex]g(x)=\sqrt[3]{x-1}[/tex]  and [tex]h(x)=\sqrt[3]{x}-1[/tex].