Respuesta :

Answer:

x ≥ -8/3

Step-by-step explanation:

=> [tex]\frac{3x+8}{x-4} \geq 0[/tex]

Multiplying both sides by (x-4)

=> 3x+8 ≥ 0

Subtracting 8 to both sides

=> 3x ≥ -8

Dividing both sides by 3

=> x ≥ -8/3

Answer:

[tex]x\le \:-\frac{8}{3}[/tex]

[tex]x>4[/tex]

Step-by-step explanation:

[tex]\frac{3x+8}{x-4}\ge \:0[/tex]

Multiply both sides by (x - 4).

[tex]\frac{3x+8}{x-4} (x-4) \ge \:0(x-4)[/tex]

[tex]3x+8\leq \:0[/tex]

[tex]3x+8-8\leq \:0-8[/tex]

[tex]3x \leq \:-8[/tex]

[tex]x\le \:-\frac{8}{3}[/tex]

Makes denominator equal to 0.

[tex]x-4=0[/tex]

[tex]x = 4[/tex]

[tex]-8/3 \leq x<4[/tex]  doesn't work in the original inequality.

[tex]x>4[/tex]  works in the original inequality.