Respuesta :

Answer:

None of the expression are equivalent to [tex]49^{(2t - 0.5)}[/tex]

Step-by-step explanation:

Given

[tex]49^{(2t - 0.5)}[/tex]

Required

Find its equivalents

We start by expanding the given expression

[tex]49^{(2t - 0.5)}[/tex]

Expand 49

[tex](7^2)^{(2t - 0.5)}[/tex]

[tex]7^2^{(2t - 0.5)}[/tex]

Using laws of indices: [tex](a^m)^n = a^{mn}[/tex]

[tex]7^{(2*2t - 2*0.5)}[/tex]

[tex]7^{(4t - 1)}[/tex]

This implies that; each of the following options A,B and C must be equivalent to [tex]49^{(2t - 0.5)}[/tex] or alternatively, [tex]7^{(4t - 1)}[/tex]

A. [tex]\frac{7^{2t}}{49^{0.5}}[/tex]

Using law of indices which states;

[tex]a^{mn} = (a^m)^n[/tex]

Applying this law to the numerator; we have

[tex]\frac{(7^{2})^{t}}{49^{0.5}}[/tex]

Expand expression in bracket

[tex]\frac{(7 * 7)^{t}}{49^{0.5}}[/tex]

[tex]\frac{49^{t}}{49^{0.5}}[/tex]

Also; Using law of indices which states;

[tex]\frac{a^{m}}{a^n} = a^{m-n}[/tex]

[tex]\frac{49^{t}}{49^{0.5}}[/tex] becomes

[tex]49^{t-0.5}}[/tex]

This is not equivalent to [tex]49^{(2t - 0.5)}[/tex]

B. [tex]\frac{49^{2t}}{7^{0.5}}[/tex]

Expand numerator

[tex]\frac{(7*7)^{2t}}{7^{0.5}}[/tex]

[tex]\frac{(7^2)^{2t}}{7^{0.5}}[/tex]

Using law of indices which states;

[tex](a^m)^n = a^{mn}[/tex]

Applying this law to the numerator; we have

[tex]\frac{7^{2*2t}}{7^{0.5}}[/tex]

[tex]\frac{7^{4t}}{7^{0.5}}[/tex]

Also; Using law of indices which states;

[tex]\frac{a^{m}}{a^n} = a^{m-n}[/tex]

[tex]\frac{7^{4t}}{7^{0.5}}[/tex] = [tex]7^{4t - 0.5}[/tex]

This is also not equivalent to [tex]49^{(2t - 0.5)}[/tex]

C. [tex]7^{2t}\ *\ 49^{0.5}[/tex]

[tex]7^{2t}\ *\ (7^2)^{0.5}[/tex]

[tex]7^{2t}\ *\ 7^{2*0.5}[/tex]

[tex]7^{2t}\ *\ 7^{1}[/tex]

Using law of indices which states;

[tex]a^m*a^n = a^{m+n}[/tex]

[tex]7^{2t+ 1}[/tex]

This is also not equivalent to [tex]49^{(2t - 0.5)}[/tex]