Find the values of x and y in these equations. (x + yi) + (4 + 6i) = 7 − 2i (equation A) (x + yi) − (-8 + 11i) = 5 + 9i (equation B)

Respuesta :

Answer:

Step-by-step explanation:

(x+yi)+4+6i=7-2i

x+yi=7-2i-4-6i

x+yi=3-8i

equating real and imaginary parts

x=3,y=-8

B.

x+yi=5+9i+(-8+11i)

x+yi=5+9i-8-11i

x+yi=-3-2i

equating real ,and imaginary parts

x=-3

y=-2

The value of x  and y for equation A is

[tex]x=3, y=-8[/tex]

The value of x  and y for equation B is

[tex]x=-3 , y=20[/tex]

Given :

[tex](x + yi) + (4 + 6i) = 7 - 2i[/tex]

find the value of x  and y in the given equation

Lets open the parenthesis and combine like terms

Equate the real and imaginary part to solve for x  and y

[tex]\left(x+4\right)+\left(y+6\right)i=7-2i\\x+4=7\\x=3\\\\y+6=-2\\y=-2-6\\y=-8[/tex]

The value of x=3  and y=-8

Now we do the same with second equation

[tex](x + yi) - (-8 + 11i) = 5 + 9i\\\\x+8+yi-11i=5+9i\\\left(x+8\right)+\left(y-11\right)i=5+9i\\x+8=5\\x=-3\\\\y-11=9\\y=9+11\\y=20[/tex]

The value of x  and y is x=-3 and y=20

Learn more : brainly.com/question/18552411