Respuesta :

Answer:

d) [tex]2\sqrt{26}[/tex] units

The perpendicular distance from the point to the line is

                                                          [tex]d = 2 \sqrt{26}[/tex]  units

Step-by-step explanation:

Step(i):-

Given point is ( -10 , -5)

Given line is y = -5 x -3

                 5 x + y + 3 = 0

The perpendicular distance from the point to the line is

         [tex]d = \frac{|ax_{1} + by_{1} + c|}{\sqrt{a^{2}+b^{2} } }[/tex]

   Given line is 5 x + y +3 =0

              a = 5 , b = 1 , c = 3

  Given point is  (x₁ , y₁) = ( -10 , -5)

Step(ii):-

The perpendicular distance from the point to the line is

         [tex]d = \frac{|ax_{1} + by_{1} + c|}{\sqrt{a^{2}+b^{2} } }[/tex]

        [tex]d = \frac{|5(-10) + 1(-5) + 3|}{\sqrt{(5)^{2}+1^{2} } }[/tex]

       [tex]d =\frac{-50-5+3}{\sqrt{25+1} } = \frac{|-52|}{\sqrt{26} }[/tex]

      [tex]d = \frac{2 X {26} }{\sqrt{26} }[/tex]

     [tex]d = \frac{2 X \sqrt{26} X \sqrt{26} }{\sqrt{26} }[/tex]         ( ∵ 26 = √26 × √26)

     [tex]d = 2 \sqrt{26}[/tex]

Final answer:-    

  The perpendicular distance from the point to the line is

                                                          [tex]d = 2 \sqrt{26}[/tex]