Respuesta :

Answer:

1/7 = 0.142857... repeating

Step-by-step explanation:

7^(-1) = 1/(7^1) =1/7 = 0.142857... repeating

Answer:

[tex] \frac{1}{7} [/tex]

Solution,

[tex] {7}^{ - 1} \\ = \frac{1}{ {7}^{1} } \\ = \frac{1}{7} [/tex]

Laws of indices:

  • Law of zero index:

[tex] {x}^{0} = 1[/tex]

  • Product law of indices:

[tex] {x}^{m} \times {x}^{n} = {x}^{m + n} [/tex]

( powers are added in multiplication of same base)

  • Power law of indices:

[tex] {( {x}^{m} )}^{n} = {x}^{m \times n} [/tex]

  • law of negative index:

[tex] {x}^{ - m} = \frac{1}{ {x}^{m} } [/tex]

  • Root law of indices:

[tex] {x}^{ \frac{p}{q} } = \sqrt[q]{ {x}^{p} } [/tex]

  • [tex]( \frac{x}{y} ) ^{n} = \frac{ {x}^{n} }{ {y}^{n} } [/tex]
  • [tex] {(xy)}^{m} = {x}^{m} {y}^{m} [/tex]
  • [tex] \sqrt[n]{x} = x \frac{1}{n} [/tex]

Hope this helps ....

Good luck on your assignment...

Ver imagen TheAnimeGirl