Answer:
[tex]g\circ f=\{(1,3),(3,6),(5,8)\}[/tex].
[tex]f\circ g[/tex] does not exist.
Step-by-step explanation:
It is given that,
[tex]f=\{(1,2),(3,4),(5,6)\}[/tex]
[tex]g=\{(2,3),(4,6),(6,8)\}[/tex]
We need to find the composition gof.
[tex](g\circ f)(x)=g(f(x))[/tex]
Now,
[tex](g\circ f)(1)=g(f(1))=g(2)=3[/tex]
[tex](g\circ f)(3)=g(f(3))=g(4)=6[/tex]
[tex](g\circ f)(5)=g(f(5))=g(6)=8[/tex]
So, [tex]g\circ f=\{(1,3),(3,6),(5,8)\}[/tex].
We need to check whether [tex]f\circ g[/tex] exist of not.
If range of g(x) is subset of domain of f(x), then we can say composition function [tex]f\circ g[/tex] exists.
Now,
Range of g(x) = {3,6,8}
Domain of f(x) = {1,3,5}
Since range of g(x) is not a subset of domain of f(x), then we can say composition function [tex]f\circ g[/tex] does not exist.