Answer: See table in the attachment.
Explanation: 1) The Parallel Dilution Formula is given by:
[tex]C_{1}.V_{1} = C_{2}.V_{2}[/tex]
where:
C is concentration
V is volume
For the given data, index 1 represents the concentration and volume of the stock solution and index 2, the concentration and volume of the diluted solution. For example:
[tex]V_{1} = \frac{C_{2}.V_{2}}{C_{1}}[/tex]
[tex]V_{1} = \frac{0.1.100}{2}[/tex] = 5 μL
[tex]V_{1} = \frac{0.15.100}{2}[/tex] = 7.5 μL
[tex]V_{1} = \frac{0.2.100}{2}[/tex] = 10 μL
[tex]V_{1} = \frac{0.25.100}{2}[/tex] = 12.5 μL
[tex]V_{1} = \frac{0.3.100}{2}[/tex] = 15 μL
[tex]V_{1} = \frac{0.35.100}{2}[/tex] = 17.5 μL
[tex]V_{1} = \frac{0.2.100}{2}[/tex] = 20 μL
Substituing [tex]C_{2}[/tex] for each concentration given and find each volume needed.
The results is shown in the second column of the table.
2) The stock and total volume is determined. So, to calculate the volume of water needed:
[tex]V_{H_{2}O} = V_{total} - V_{stock}[/tex]
[tex]V_{H_{2}O}[/tex] = 100 - 5 = 95 μL
[tex]V_{H_{2}O}[/tex] = 100 - 7.5 = 92.5 μL
[tex]V_{H_{2}O}[/tex] = 100 - 10 = 90 μL
[tex]V_{H_{2}O}[/tex] = 100 - 12.5 = 87.5 μL
[tex]V_{H_{2}O}[/tex] = 100 - 15 = 85 μL
[tex]V_{H_{2}O}[/tex] = 100 - 17.5 82.5 μL
[tex]V_{H_{2}O}[/tex] = 100 - 20 = 80 μL
As shown in the third column of the table.