Answer:
Explanation:
stiffness k = 160
m = 10
angular frequency ω = [tex]\sqrt{\frac{k}{m} }[/tex]
= [tex]\sqrt{\frac{160}{10} }[/tex]
= 4
ω = 4
Let x = 4 - A sinωt
when t = 0
x = 4 in
when t = 2 s , x = - 4
- 4 = 4 - A sinωt
8 = A sin 4 x 2
8 = A sin8
A = 8 / sin 8
= 8 / .989
= 8.09 in .
x = 4 - A sinωt
dx / dt = - Aω cosωt
v = - Aω cosωt
for t = 0
v = - Aω
= - 8.09 x 4
= - 32.36 in / s
initial velocity v = - 32.36 in /s
displacement x for t = 4s
x = 4 - 8.09 sin 4 x 4
= 4 - 8.09 sin 16
= 4 - 8.09 x - .2879
= 4 + 2.33
= 6.33 in.
c ) Amplitude of vibration A = 8.09 in .as calculated above .