pls help will give brainliest Rena used the steps below to evaluate the expression (StartFraction (x Superscript negative 3 Baseline) (y Superscript negative 2 Baseline) Over 2 (x Superscript 4 Baseline) (y superscript negative 4 Baseline) EndFraction) Superscript negative 3, when x = negative 1 and y = 2. Step 1: Substitute x = negative 1 and y = 2 into the expression. (StartFraction (negative 1) Superscript negative 3 Baseline (2) Superscript negative 2 Baseline Over 2 (negative 1) Superscript 4 Baseline (2) superscript negative 4 Baseline) EndFraction) Superscript negative 3 Step 2: Simplify the parentheses. (StartFraction (2) Superscript 4 Baseline Over 2 (negative 1) Superscript 4 Baseline (negative 1) cubed (2) squared EndFraction) Superscript negative 3 Baseline = (StartFraction (2) squared Over 2 (negative 1) Superscript 7 Baseline EndFraction) Superscript negative 3 Step 3: Evaluate the power to a power. StartFraction (2) Superscript negative 6 Baseline Over 2 Superscript negative 3 Baseline (negative 1) Superscript negative 21 baseline EndFraction Step 4: Use reciprocals and find the value. StartFraction 1 Over 2 cubed (2) Superscript 6 Baseline (negative 1) Superscript 21 Baseline EndFraction = StartFraction 1 Over 8 times 64 times (negative 1) EndFraction = Negative StartFraction 1 Over 512 EndFraction In which step did Rena make the first error? Step 1 Step 2 Step 3 Step 4

Respuesta :

Answer:

  First "order of operations" mistake: step 2

  First arithmetic mistake: step 4

Step-by-step explanation:

As we understand Rena's work, she wants to simplify ...

  [tex]\left(\dfrac{x^{-3}y^{-2}}{2x^4y^{-4}}\right)^{-3}[/tex]

for x = -1 and y = 2.

Her work seems to be ...

Step 1

  [tex]\text{Substitute $x=-1$ and $y=2$ into the expression}\\\\\left(\dfrac{(-1)^{-3}2^{-2}}{2(-1)^42^{-4}}\right)^{-3}\qquad\text{no error}[/tex]

Step 2

  [tex]\text{Simplify the parentheses}\\\\\left(\dfrac{2^4}{2(-1)^4(-1)^32^2}\right)^{-3}=\left(\dfrac{2^2}{2(-1)^7}\right)^{-3}\qquad\text{order of operations error}[/tex]

Step 3

  [tex]\text{Evaluate the power to a power}\\\\\dfrac{2^{-6}}{2^{-3}(-1)^{21}}\qquad\text{no error}[/tex]

Step 4

  [tex]\text{Use reciprocals and find the value}\\\\\dfrac{1}{2^32^6(-1)^{21}}=\dfrac{1}{8\cdot 64\cdot (-1)}=\dfrac{-1}{512}\qquad\text{error: $2^3$ is used instead of $2^{-3}$}[/tex]

_____

So, the first arithmetic error is in Step 4. However, the order of operations requires exponents be evaluated first. Doing that makes step 2 look like ...

  [tex]\left(\dfrac{-\dfrac{1}{4}}{2(1)\dfrac{1}{16}}\right)^{-3}=(-2)^{-3}\qquad\text{proper Step 2}[/tex]

__

We expect your answer is supposed to be Step 4.

Answer:

D.

Step-by-step explanation: