contestada

4) (5 points) Given are the magnitudes and orientations (with respect to x-axis) of 3
vectors:
TĀ = 4.5N, 0,= 55
BI = 1.5N, 0,= 145
C = 6.00, 0 = 235
Determine the resultant vector Ř of these 3 vectors through the analytic method
involving components. You have state both the magnitude and the angle with respect to
x-axis.

4 5 points Given are the magnitudes and orientations with respect to xaxis of 3 vectors TĀ 45N 0 55 BI 15N 0 145 C 600 0 235 Determine the resultant vector Ř of class=

Respuesta :

Expand each vector into their component forms:

[tex]\vec A=(4.5\,\mathrm N)(\cos\theta_A\,\vec\imath+\sin\theta_A\,\vec\jmath)=(2.58\,\vec\imath+3.69\,\vec\jmath)\,\mathrm N[/tex]

Similarly,

[tex]\vec B=(-1.23\,\vec\imath+0.860\,\vec\jmath)\,\mathrm N[/tex]

[tex]\vec C=(-3.44\,\vec\imath-4.91\,\vec\jmath)\,\mathrm N[/tex]

Then assuming the resultant vector [tex]\vec R[/tex] is the sum of these three vectors, we have

[tex]\vec R=\vec A+\vec B+\vec C[/tex]

[tex]\vec R=(-2.09\,\vec\imath-0.368\,\vec\jmath)\,\mathrm N[/tex]

and so [tex]\vec R[/tex] has magnitude

[tex]\|\vec R\|=\sqrt{(-2.09)^2+(-0.368)^2}\,\mathrm N\approx2.12\,\mathrm N[/tex]

and direction [tex]\theta_R[/tex] such that

[tex]\tan\theta_R=\dfrac{-0.368}{-2.09}\implies\theta_R=-170^\circ=190^\circ[/tex]