Respuesta :
Answer:
(a) [tex]\frac{dy}{dt}=k\left ( 700000-y(t) \right )[/tex]
(b) [tex]y(t)=700000-700000e^{\frac{1}{9}\ln \left ( \frac{1}{2} \right )t}[/tex]
Step-by-step explanation:
Given: News spreads through a city of fixed size of 700000 people at a time rate proportional to the number of people who have not heard the news.
To find:
(a) a differential equation
(b) number of people who have heard the news after t days
Solution:
(a)
Total number of people in a city = 700000
As y(t) denotes the number of people who have heard the news t days after it has happened
Number of people who have not heard the news = 700000 - y(t)
So, differential equation is [tex]\frac{dy}{dt}=k\left ( 700000-y(t) \right )[/tex]
Here, k is the proportionality constant.
(b)
Integrate both sides of the differential equation.
[tex]\frac{dy}{dt}=k\left ( 700000-y(t) \right )\\\int \frac{dy}{\left ( 700000-y(t) \right )}=\int k\,dt\\ln\left ( 700000-y \right )=kt+C\,\,\left \{ \because \int \frac{dy}{y}=\ln y+C \right \}[/tex]
Use [tex]y(0)=0[/tex]
[tex]ln\left ( 700000-y \right )=kt+C\\\ln (700000)=C\\\Rightarrow ln\left ( 700000-y \right )=kt+\ln (700000)[/tex]
As a poll showed that 350000 people have heard the news 9 days after a scandal in City Hall was reported, [tex]y(9)=350000[/tex]
[tex]ln\left ( 700000-y \right )=kt+\ln (70000)\\ln\left ( 700000-350000 \right )=kt+\ln (700000)\\\ln (350000)=9k+\ln (700000)\\9k=\ln (350000)-\ln (700000)\\[/tex]
[tex]9k=\ln \left ( \frac{350000}{700000} \right )\\9k=\ln \left ( \frac{1}{2} \right )\\k=\frac{1}{9}\ln \left ( \frac{1}{2} \right )\\ln\left ( 700000-y \right )=\frac{1}{9}\ln \left ( \frac{1}{2} \right )t+\ln (700000)\\ln\left ( 700000-y \right )-\ln (700000)=\frac{1}{9}\ln \left ( \frac{1}{2} \right )t\\[/tex]
[tex]\ln \left ( \frac{700000-y }{700000} \right )=\frac{1}{9}\ln \left ( \frac{1}{2} \right )t\\ \frac{700000-y }{700000}=e^{\frac{1}{9}\ln \left ( \frac{1}{2} \right )t}\\700000-y=700000e^{\frac{1}{9}\ln \left ( \frac{1}{2} \right )t}\\y=700000-700000e^{\frac{1}{9}\ln \left ( \frac{1}{2} \right )t}\\[/tex]